ParaSel Version 1.0

The ParaSel method is a Maximum Likelihood method for testing and detecting site-specific parallel selection. Given a multiple sequence alignment (MSA) and a phylogenetic tree, the program determines whether or not directional selection has operated along the phylogeny and led to the fixation of parallel substitutions (nucleotides) or replacements (amino-acids). For more detailts on the model and its use see Stern et al. "The Evolutionary Pathway to Virulence of an RNA Virus", Cell 2017.

Manual

Contents

Download and Installation	
Compiling Parasel	3
Running ParaSel	3
More options and instructions	<i>6</i>

Download and Installation

Source code (C++) is available at https://github.com/sternadi/parasel

Compiling Parasel

1. In order to unzip and untar the files please type:

tar -xzvf parasel.tar.gz

This will create the following directories:

libs/phylogeny

programs/directionalSelection

2. In some operating systems, you may use the makefiles to compile the program. If this does not work, skip to item 3.

Make sure you are in the directory where you unzipped the files, and type: *cd libs/phylogeny*

In order to run the Makefile, type:

make

Now, type:

cd ../../programs/directionalSelection

to get to the directional Selection directory. Type:

make

in order to run the Makefile.

This will result in an executable file called *directionalSelection* which will reside in the *programs/directionalSelection* directory.

- 3. In some systems the makefiles will not be operable. Thus, follow step 1 and compile directly using g++:
 - a. Make sure you are in the directory where you unzipped the files.
 - b. Type:

mv libs/phylogeny/* programs/directionalSelection/

c. cd to the directional Selection library:

cd programs/directionalSelection

d. To compile, type

g++ -O3 -o directionalSelection *.cpp

This will result in an executable file called *directionalSelection* which will reside in the directory where you ran the g++ command.

If there are any problems with the compilations (occasionally, with old versions of g++) - please email <u>sternadi@post.tau.ac.il</u> and I'll try to help. To modify the code, or use parts of it for other purposes, permission is requested. Please note that the use of the program is for academic use only.

Running ParaSel

The aim of ParaSel is to detect directional selection in which one allele is preferred (selected for) and hence the probability of fixation of such an allele is elevated. Such a

case is expected to lead to parallel fixation events along the phylogeny. Hence, we use the terms directional selection and parallel fixation, or parallel selection, interchangeably in this document.

In order to infer parallel selection for a certain dataset, we recommend performing the following stages:

When the ancestral sequence is known, the method has the most power:

- Perform a statistical test to infer whether significant directional selection
 is operating on the dataset at hand. To this end compare the Akaike
 Information Crierion (AIC) between a null model and ParaSel (see
 below). If this test is in support of directional selection, proceed to the
 next stage.
- 2. Infer sites under directional selection based on their posterior probability (see below).

To run the program you must supply a parameters text file. Simply type in the command line:

```
parasel parameters file name
```

A basic example parameters file is available at the ParaSel webpage (parasel.params). See below how to use it.

For more complex options see the parasel.alloptions.params file, also available at the ParaSel webpage.

1. Performing a statistical test to assess significance of directional selection

In order to assess statistical significance of directional selection, the program must be run twice: once with a directional selection enabling model and once with a null model (which does not enable directional selection). Then the likelihood values of the two runs need to be used to calculate AIC (or AICc) scores (see here).

Thus, run the program twice, with the following parameters files (make sure to use the same phylogenetic model name modelName in both runs):

1. For the directional selection model use the file: parasel.params. The number of parameters *k* in this model is 6.

2. For the null model to run, use the file: null.params. The number of parameters k in this model is 4.

The likelihood of the data given each model will be in the results file, which can then be converted into AIC scores, and used to assess whether the directional selection model better fits the data at hand. AIC is necessary since none of the asymptotic methods are applicable for using the X^2 approximation for a likelihood ratio test, typically used when comparing two phylogenetic models. This pathology occurs since S is only estimated in the alternative model and not in the null model.

2. Inferring sites under directional selection

The results file of the directional selection model from stage 1 will contain all the information required for determining which sites have experienced rate shifts. The file will look like this:

```
#dirSel Results File
#----
#Parameters are:
#Log-likelihood: -41231.6
#S = 10
\#Prob\ (S) = 0.00735633
#alpha=0.27
#K=11
#beta=0.000207357
#tau=0.757477
q = 0
#Rate categories are
       0.000243454
       0.00611082
       0.0367097
       0.126226
       0.330245
       0.75329
       1.6675
       5.07968
#(Parameters are ML estimates)
#Results of analysis
#Displayed on sequence XXX
     -----
#POS(QUERY_SEQ) POS(ALN) RESIDUE POSTERIOR PROBABILITY OF DIRECTIONAL
SELECTION

A C G T

1 1 G 1.3e-16 8.6e-06 0.0035 1e-05 1

2 2 G 1.3e-16 8.6e-06 0.0035 1e-05 1

3 3 G 2.1e-08 0.00081 3.7e-14 0.00078 1

4 4 T 0.95 6.6e-15 6.5e-06 4.1e-08 0
SELECTION -
                            6.6e-15 6.5e-06 4.1e-08 0.048
```

The top of the results file reports the values of various parameters of the model. Th bottom part presents the posterior probability that each site experienced directional selection for a specific character. The last column represents no directional selection. Thus, in the example above, the first three sites are *not* inferred to be under directional

selection. On the other hand site 4 has a posterior probability of 0.95 for undergoing directional selection for "A".

More options and instructions

You may more complex options aslisted below. In order to specify a root sequence (as in Stern et al. Cell 2017), you will need to add the root sequence to both the alignment and to the tree. Within the tree, this sequence will have a branch length of zero. Next, specify this sequence as the query sequence (inQuerySeq) and invoke useQueryFreqsAtRoot.

The basic options are:

	Name	Description	Default	Remarks	
Input	_inSeqFile	Input aligned	Obligatory	Use full path.	
		sequence file		Formats accepted	
				are: Fasta, Clustal,	
				Phylip, Mase	
	_inTreeFile	Input user tree in	NJ tree	Use full path	
		Newick file.			
	_inQuerySeq	Name of query	1st in the	This determines the	
		sequence	sequences	numbering of the	
			file	sequence for which	
				results are	
				displayed.	
	_outResFile	Results output file	Obligatory	Use full path	
	_logFile	Log file name		Use full path	
	_outTreeFile	Output tree file		Will report tree	
put				with optimized	
Output				branch lengths,	
				based either on tau	
				(see below) or on	
				individual branch	

	length optimization	
	(see below _bblOpt)	

The more complex options are:

Name	Description	Default	Remarks
modelName	{hky (HKY),jtt (JTT), rev (REV	hky	
	- for mitochondrial genomes),		
	day (DAY), HIVb, HIVw, aajc		
	(JC amino acids)}		
numOfCategoriesF	Number of categories for among	4	Integer
rRateDistr	site rate variation,		
	discretized gamma distribution		
useQueryFreqsAtR	The root sequence is	0=false	0 or 1
ot	determined to be that of the		
	query sequence specified		
doMutationMappin	Map where mutations	0=false	0 or 1
ſ	(nucleotide substitutions or		
	amino-acid replacements)		
	occurred along the phylogeny,		
	using joint posterior		
	probabilities at each node of		
	the tree (see Stern et al.		
	Cell 2017 for more details).		
	If invoked, a file with suffix		
	.map is created listing sites		
	and mutations, and their		
	posterior probability.		
verboseLevel	Verbose level for log file	5	Integer
isNull	Use a null model by invoking	0=false	0 or 1
	ProbS = 0		
bblOpt	Perform branch length	1=true	0 or 1

	optimization on each branch.		
	Due to computational intensity		
	this option is not recommended		
	for large sequence alignments		
fixedS	Fix S value; S is not	0=false	0 or 1
	optimized using ML and is set		
	at _initS		
initS	Initial value for S	10	real
fixedProbS	Probability of site undergoing	0=false	0 or 1
	directional selection (P_{DS}) is		
	fixed		
initProbS	Initial value for P _{DS}	0.01	real
fixedKappa	Kappa (parameter for HKY model	0=false	0 or 1
	for Ts/Tv ratio) is fixed		
initKappa	Initial value for kappa	2	real
fixedAlpha	Alpha (shape parameter for	0=false	0 or 1
	gamma distribution) is fixed		
initAlpha	Initial value for alpha	1	real
fixedBeta	Beta (relaxation factor for	1=true	0 or 1
	tree leaves rates) is fixed		
initBeta	Initial value for beta	0	real
fixedTau	Tau (inflation/deflation	1=true	0 or 1
	factor for all tree branch		
	lengths) is fixed		
initTau	Initial value for tau	1	real
			1